CVS User’s Guide

NCICB Software Configuration Management Initiative

31.
Introduction

31.1
References

31.1.1
CVS

31.1.2
Software Configuration Management

32.
Terminology

32.1
Branch

32.2
Check-In

42.3
Check-Out

42.4
Codeline

42.5
Commit

42.6
Configuration Item

42.7
Merge

42.8
Update

42.9
Version

52.10
Working Copy

53.
CVS Fundamentals

53.1
Introduction

53.2
Optimistic vs. Pessimistic Locking

53.2.1
Optimistic Locking

53.2.2
Pessimistic Locking

63.3
Tagging

63.4
Branching & Merging

63.4.1
Branching

63.4.2
Merging

73.4.3
Best Practices

73.5
Command Summary

73.5.1
Connecting to cvs

83.5.2
Import your project into cvs

93.5.3
Create a local working directory (checkout)

93.5.4
Add new files to the repository

93.5.5
Edit files and commit changes

93.5.6
Update your working copy

103.5.7
Create a Tag

103.5.8
Create a Branch

103.5.9
Merge the specified branch into your working copy.

113.6
Command Options

113.7
Conflict

113.7.1
Overview

123.7.2
Resolution

124.
Patterns

124.1
Mainline

124.1.1
Purpose

134.1.2
Implementation

134.2
Active Development Line

134.2.1
Purpose

134.2.2
Implementation

134.3
Codeline Policy

134.3.1
Purpose

144.3.2
Implementation

145.
Tools

145.1
Cygwin

145.2
WinCVS

145.3
TortoiseCVS

145.4
KDiff

145.5
Guiffy

145.6
Eclipse

1. Introduction
This document will provide an introduction to CVS, and discuss some best practices for using it. We will introduce some common Software Configuration Management Patterns and provide guidelines on how to implement them using CVS.

1.1 References

1.1.1 CVS
Cederqvist, P., Version Management with CVS. (http://www.cvshome.org/docs/manual/)
This is the “official” manual for CVS. It covers both administration and usage of CVS. It has an appendix of CVS commands and all their options.
Fogel, K., and M. Bar, Open Source Development with CVS. (http://cvsbook.red-bean.com/)
Also known as the “Red Bean” book. It also covers both administration and usage, and has a helpful FAQ/troubleshooting section. This book covers much the same material as above, but is primarily useful for its chapters on using CVS for open-source development.
1.1.2 Software Configuration Management
Appleton, B., S. Berczuk, R. Cabrera, and R. Ornstein, Streamed Lines: Branching Patterns for Software Configuration Management. (http://www.cmcrossroads.com/bradapp/acme/branching/branch-creation.html)
Berczuk, S. P. and B. Appleton, Software Configuration Management Patterns, Boston: Addison Wesley, 2003
These are both excellent sources for discussion of common SCM patterns and when they are applicable.

Leon, Alexis, Software Configuration Management.
2. Terminology

This section introduces some common SCM terms.
2.1 Branch

A separate line of development within a version control system. The purpose of branches is to isolate large-scale changes that affect multiple files and must be committed atomically, rather than piece-meal. Also referred to as a codeline.
Scenario: You release version 1.0 of your product, and continue on with development of version 1.1, targeted for release in a month. After a while with 1.0, your customers call and complain about a fatal bug. So you check out release 1.0 and find the bug. However, the current versions of the source file are not stable enough to create a bugfix release from the tip of the repository, so you need to create a branch consisting of all the files in release 1.0, fix the defect in that branch, and then either merge them back into the trunk, or leave them isolated.
2.2 Check-In

Check-in doesn’t really mean anything in CVS, although it is often used as a synonym for commit. Under other version control systems, check-in means to save your changes and unlock the file so other can edit it.
2.3 Check-Out
Check-out means something different in CVS than in other version control systems. In CVS terminology, check-out means to create a local working copy of the repository. Under other version control systems, check-out means to lock a particular file for editing.
2.4 Codeline

See branch.
2.5 Commit

The act of merging changes from a developer’s private workspace into the repository. CVS will warn you of any conflicts between your copy and the repository copy. If the repository version has changed (another developer committed changes after you started editing), CVS will warn you that the commit can’t continue because your version is out of date. In that case, you need to perform an update first, to merge repository changes into your local copy, before you can commit yours.
2.6 Configuration Item

Any resource that is being held under configuration control.
2.7 Merge

The act of moving changes from one branch to another (or, more strictly speaking, from one version of a file to another). Most merging strategies are based strictly on changed lines within a file, and thus only work with text files. Binary files, since they don’t contain ‘lines’ are harder to merge, and most systems will simply store another entire copy. Version control systems that use a merging strategy will only keep a single version of the file, and a record of all the changes that have accrued over time. Thus, an earlier version of the file is obtained by getting the latest version, and applying the changes (or deltas) to it in order.
Although we commonly think of merging as a special activity that closes the loop on a branch (bringing it back to the trunk), merges are occurring constantly in tools like CVS. Every time a commit or update occurs, CVS merges the developer’s working copy version with the repository version. Merge headaches are largely a function of the semantic drift between the two versions being merged, which itself is largely a product of the time lag between commits.
Strictly speaking, CVS performs three-way merges: the working copy file, the repository file, and their greatest common ancestor. In many cases, the greatest common ancestor is identical to the repository version of the file, in which case there will never be any conflicts.
2.8 Update
Update is essentially the opposite of commit. It will update your local working copy with any new changes that have been committed to the repository. CVS will never overwrite your local changes. If there is a conflict between your local changes and changes that have occurred in the repository, CVS will back up your version and create a ‘conflict file’ that highlights the areas of conflict between the two versions. Working directly with a conflict file can be difficult if you are not used to it. There are open source tools (KDiff, Eclipse, for example) that have much nicer conflict resolution support.
2.9 Version
Very generically, a version is an instance of a configuration item that is in some way different from other instances of that configuration item. Thus a particular file might exist in a number of different versions in the repository, each with a unique identifier that allows it to be distinguished from all other versions. Upon commit, CVS distinguishes the new version of the file by incrementing its version number by 1. Thus the first version of a file is 1.1, the next 1.2, and so on.
2.10 Working Copy
The working copy of a file refers to a developer’s local version of a file that is being managed in the version control system. The working copy is effectively isolated from the repository version until an update or commit operation is performed.

The terms working directory, workspace and sandbox are equivalent.
3. CVS Fundamentals

3.1 Introduction

CVS, like other version control systems, allows the developer to isolate his workspace (or working copy) from the activities of other developers in order to give him control over when and how his environment changes. For practical purposes, this means that the developer controls when to integrate changes from other developers into his workspace, providing stability for ongoing development operations. There is no guarantee, however, that code that works within a developer’s workspace will work once all other changes have been integrated, so developers should integrate new code into their workspace as often as possible. Generally speaking, the longer the delay between commits or updates, the greater amount of semantic drift between versions, and the likelier there is to be a conflict.
3.2 Optimistic vs. Pessimistic Locking

Although these terms are usually used in reference to database management systems (DBMS) (specifically, referring to when the DBMS will ‘lock’ a particular table to prevent concurrent access to the same data), the concepts are equally applicable to source code control systems. Berczuk and Appleton have a particularly good discussion of the issues and the positives and negatives of each approach. CVS uses an optimistic locking strategy, which means that files are not locked until committed back to the repository. Pessimistic systems allow (or force) developers to check-out a particular file before they can edit, and while it is checked out, no one else may change it.
3.2.1 Optimistic Locking

Optimistic locking strategies within version control systems are also known as Copy-Modify-Merge strategies. In such a strategy, each developer has their own local copy of a file which they may edit to their heart’s content. When they are prepared to commit their changes to the repository, the version control system will merge their changes with the version in the repository to create the new version. If another developer has made changes, CVS will notify you that your working copy is out of date, and will require you to update first (updates will never overwrite your local changes; at worst, you will end up with a conflict file and be required to do some reconciliation). Merging usually proceeds transparently, unless there have been incompatible changes (edits to the same line, for example). In those cases, CVS will notify the committer of the problem and allow him an opportunity to reconcile the changes and recommit. The downside to this approach is when there are complicated merges; it is often easier to redo one set of changes than to spend the time reconciling. However, there are patterns that can help reduce the likelihood (or at least the complexity) of conflicts.
3.2.2 Pessimistic Locking

Pessimistic locking strategies require developers to check out a file from the repository before they may perform any edits. While a file is locked, only the developer who has it checked out may edit it. This usually eliminates the problem of a conflict during check-in, since no one else could have made any changes. The weakness with such a strategy is the same as it is in database management systems; namely, that there may in reality be no contention between edits (as when the two editors are working on different parts of the file). In these cases, locking a file slows down one developer. It is also a common occurrence that a developer would forget to release the lock, and leave other stranded for an indeterminate period of time, unless they ‘steal’ the first developer’s lock, which is itself a problem.
3.3 Tagging

Upon committing a file to the repository, CVS will automatically assign a version number to it (by the simple expedient of incrementing the current version number by 1). However, it’s often helpful to assign tags to your artifacts to identify them in other meaningful ways. For example, version 1.1 of your software includes dozens of files, each with a specific version. In version 2.0 of your product, there are some new files, some that were deleted, many that have changed in some way, and probably even a few that have not changed. But unless you spent the time to write down the specific version numbers of each file that went into each version of your product, there is no way to know which versions went into which release. By applying a tag (version_1_1) to your repository, you can mark those files (actually, specific versions of those files) as belonging to a specific release. At some later date, you can retrieve those files by specifying a tag, and thus can reproduce a snapshot of your repository at any point of time.
To summarize, tags apply to all the files in your repository, and group together arbitrary versions of your files. Files can have as many tags as you’d like; the only requirement is that they be unique. Tags by default attach to a specific version of a file, but it is possible to make them ‘sticky’. This means that the tag will move to the latest version upon commit.
Tags are used to denote releases, stable milestones, variants, and branches (more on this below). All things being equal, it is better to have too many tags than not enough.
3.4 Branching & Merging

3.4.1 Branching

Branching creates an isolated codeline, allowing your project to evolve along parallel lines. The branch is identical to the trunk that spawned it at the point at which the branch was created. Essentially, your project can support multiple, independent variants of your files, each of which is under active development at the same time. Release branches are a common strategy. When your software is ready to be released to the public, a branch is created that includes all the files in that release. Development of the next version occurs along the trunk, but any defect fixes to the released version occur in the branch. This allows you to isolate bug fixes from ongoing development activities. Consider the alternative: without branching, delivering a bug fix is much more complicated. If development for the next version has continued in the trunk, you may have introduced instability or new features that you don’t want to deliver with the fix. Task branches can isolate potentially destabilizing activities so as not to interfere with other development efforts (a common reason to create a task branch might be to isolate a complicated refactoring operation from the rest of the ongoing development operations).
Branches are created using a special type of tag, called a branch tag, which is a sticky tag.

3.4.2 Merging

Very often, changes are made in a branch that you want to be included in the trunk. CVS allows you to merge a branch back into its spawning branch. In the scenario above, you may want to merge any bugfixes from your release branch back into the main development line so they don’t come back to haunt you in your next release. As was noted above with file merges, conflicts are more likely the longer the branch has gone without a merge. Merging branches is conceptually identical to individually merging all the files in the two branches. Any conflicts will be highlighted, and you will be given an opportunity to reconcile them.
3.4.3 Best Practices

Best practices for branching and merging are easily summarized as “branch rarely, merge often”. There are good reasons for branching, but you should make sure you know why you’re creating a branch and what purpose it will serve.
· Minimize the number of branches active at any one time. The more branches under development at the same time, the more likely they are to conflict when they are merged back into the mainline or trunk. In practice, the best way to accomplish this is to merge branches as often as possible (when the branch is at a stable point).

· Minimize the complexity (depth) of your branching scheme. Only rarely should you ever branch from a branch. Usually, it’s best to only branch off the mainline, and merge changes back in as often as possible.
· Use consistently named tags to mark all branch and merge events. When a branch is merged multiple times back into the trunk, having tags at all the merge events helps minimize conflicts.

· Adhere to a well-understood naming convention for tags. For example, branch tags should include a descriptive name that describes the purpose of the branch, plus a suffix indicating that it is a branch. Non-branch tags should follow some similar convention. Non-branch tags that are paired with branch tags should have some indicator of which branch they are paired with (example : ‘root-of-<<branch tag name>>).

· Every branch should have an owner (including the trunk), whose job it is to understand the purpose of the branch, be responsible for merging back to the trunk, establish the working policy for the branch, and to document deviations from the policy.
3.5 Command Summary

This section is not intended as a tutorial to CVS; either the Cederqvist or Fogel books referenced above are excellent resources. This section introduces the most commonly used CVS commands. Note that it does not
3.5.1 Connecting to cvs
:<protocol>:<user>@<host>:<port>:<repository_root>
Please note the positions of the colons; they are required. If you are using the command-line CVS client, you can define the environment variable CVSROOT using the form above. GUI clients, such as TortoiseCVS (http://www.tortoisecvs.org/), will provide a graphical interface for entering the information.
[image: image1.png]Fetchlst

· Protocol: the connection protocol to use. This will usually be pserver or ext, although as you can see, CVS supports a number of protocols.

· User: your user name. This is provided by the SCM Administrator.

· Host: the machine where the repository is located. For NCICB development, this is cbiocvs2.nci.nih.gov.

· Port: this can usually be left blank, unless the server has been configured to use a port other than the default (2401).

· Repository root: this is the filesystem path on the server where the repository is located.

· Module: not strictly part of the CVSROOT, but mentioned here because it appears in the dialog box above. This is the name of the module you want to check out of the repository. CVS will look for all the files stored in <repository_root>/<module>.
3.5.2 Import your project into cvs
cvs import –m “message” <module> <vendor-tag> <version-tag>
This is as good a place as any to discuss the differences between text and binary files. CVS treats them differently internally. Binary files can not be diffed and merged (see discussion above) like text files. CVS by default converts line endings in files to the form appropriate to the operating system on the client machine, and also by default supports keyword expansion (see below). If you are using the command line client to perform imports, CVS will assume that all files are text and that you want keyword expansion on. It is possible to change this later, but keep it in mind when performing an import via the command line. If you forget to change the file’s setting, you may get odd results.
CVS has a special list of keywords that you can insert into a file that will automatically get expanded on commits or updates. The most commonly used are $Author$, $Date$, and $Revision$. For binary files, keyword expansion should be turned off (with the –kb switch).
3.5.3 Create a local working directory (checkout)
cvs checkout <module>
- or -
cvs checkout –r <<BRANCH_NAME>> <<MODULE_NAME>>

The second version will checkout a specific branch, ‘moving’ your working copy to that branch. Both of those versions of the command assume that you have defined the environment variable CVSROOT as described above to point to the correct repository. If not, you can pass the entire CVCSROOT on the command line with the –d switch.
3.5.4 Add new files to the repository
cvs add <files>
If you want to specify the keyword substitution mode, rather than using the default, you can specify it on the command line with the –k<mode> switch. The most common modes are ‘kv’ which turns on key-value substitution, ‘o’ which turns it off, and ‘b’ which turns it off and tells cvs that the file is binary.
3.5.5 Edit files and commit changes
cvs commit –m “log message” <files>
Commit any changes in your working copy back to the repository. If another developer has made changes to any of the files that you are committing, you will get an ‘out of date’ error from cvs and will need to perform an update first. The <files> parameter is optional. By default, cvs will commit all files in the current directory and all subdirectories, unless you specify the –l parameter (local directory only). The log message is required, however. If you forget, cvs will put up a dialog box to remind you to enter a comment.

A note on log messages: every time you commit a file, you should enter a log message that describes succinctly what you did to the file and why. This is necessary for auditing and traceability purposes. CVS has been configured to require a log message on all commits.
3.5.6 Update your working copy
cvs update <files>
- or -

cvs update –r <<BRANCH_NAME>>
The second version updates your working copy with the files in the specified branch. This form of the command simply ‘moves’ your local working directory to the branch specified, but doesn’t merge local changes. CVS will warn you if there are changed files in your current working directory that need to be committed. If you are intending to merge changes from the specified branch into your local working copy, use the –j form discussed below.

3.5.7 Create a Tag

cvs tag <<TAG_NAME>>
Please refer to the discussion above for tag best practices. It is possible to move a tag using the –F switch, or to delete a tag with the –d switch, but you should not use these options casually. Moving a release tag after a release has been created can create confusion if you ever need to recreate that particular tagged version later. Similarly, deleting a tag will make it impossible to recreate the version that the tag denotes.
3.5.8 Create a Branch

cvs tag –b <<BRANCH_NAME>>
As you can see from the format of the command, branches are created with a special form of tag, called a branch tag. Branch tags are ‘sticky’, meaning they move to the latest version of the file upon commit. To actually begin working on that branch, you will need to use one of the update or checkout commands defined above.
3.5.9 Merge the specified branch into your working copy.

cvs update –j <<BRANCH_NAME>>
- or -

cvs update –j <<TAG_NAME>> -j <<BRANCH_NAME>>
cvs update –j HEAD

cvs update –j <<TAG_NAME>> -j HEAD
The second version merges only the changes that have occurred since the first tag name. You will use this syntax when you have already merged a branch to the trunk, but have additional changes you wish to merge
. CVS will complain if you try to re-merge changes that have already been merged, so immediately after merging a branch, you should re-tag the merge point with another tag
. The final two examples show how to merge changes from the main trunk into a branch, using the special tag HEAD, which always represents the trunk of your repository.
You probably won’t ever use the last two versions of the update command. If you have created a version branch, you probably won’t want to merge changes from the trunk onto it because the trunk may be unstable or may include changes you don’t want to get patched into the release. If there are changes in the trunk that you need to make on the branch, it may be a better strategy to make the changes manually, which guarantees that no unexpected changes find their way into the release branch.
3.6 Command Options
Please see Cederqvist for the expanded list of command options. This section is only intended to document the most common ones.

CVS commands look like :

cvs [global_options] command [command_options] [command_args]

The most common global options are

–d root [root specifies the CVSROOT to use]

-n [do not change any files]. This will give you a preview of what your command will do, without actually changing anything.
-r [make new working files read-only; used with checkout]

-v [print version information]

-w [make new working files read-write]

-H, --help [print a help message]

3.7 Conflict

3.7.1 Overview

This is as good a place as any to talk in more detail about conflicts. This seems to be a major source of concern for most developers, especially those who are used to version control systems with exclusive locking. Conflicts occur when two developers modify the same line(s) of code. In those cases, CVS is designed to fail conservatively; that is, it will not try to guess which change to keep, but will immediately warn the committer and let him sort it out. Otherwise, you won’t ever know that someone else edited the same file. Conflicts are essentially only caught during updates. If you try to commit a file that someone else has edited, CVS will warn you that the ‘up-to-date check failed’ for the file, and you will have to perform an update first. The update will merge the most recent changes in the repository with your working copy. If there are any conflicts, CVS will backup your version in your working directory (by convention, it will be renamed to .#<filename><version>), and create a conflict file in its place. The conflict file is, more or less, the output of the diff command on Unix. Unless you’re comfortable working with that format, there are tools (kdiff3, guiffy, or the Eclipse client) that will provide a friendlier view and line-by-line merge support.
Note that CVS will never overwrite your changes when it performs an update, so you should never fear updates. Also note that even a tool that allows you to do exclusive locking and editing can create conflicts that will have to be resolved, if it supports branching. Since branches allow files to evolve along parallel lines, there is always the possibility of incompatible changes in different branches.
In the scenario below, developers in workspace 1 and 2 each begin to edit version 1.2 of a particular file. Developer 1 finishes first and commits her changes, so the new version in the repository is version 1.3. When developer 2 attempts to commit his changes, CVS will complain that the ‘up-to-date check failed’, and will force developer 2 to perform an update. Upon update, CVS will merge two sets of changes (or deltas) together to create the new version: the deltas between repository version 1.2 and 1.3, and the changes between repository version 1.2 and the local version. As was discussed above in the definition of merging, version 1.2 is the greatest common ancestor of the two files being merged. After resolving any conflicts, developer 2 can safely commit his changes, creating repository version 1.4.
[image: image2.png]Mainline

Working
Copy #1

commit

@

Working
Copy #2

/Ca\
ANy
/ ’ update. ‘commit

A

3.7.2 Resolution

There are two strategies for resolving conflicts, and plenty of tool support available to make it easier, if you’re not comfortable with diff output. Rather than discussing how to do it with a tool, we will discuss the higher level strategies.

The easiest option when you encounter a conflict (and the one most likely to get you in trouble with your fellow developers) is to simply force your changes into CVS, overwriting the conflicts. As was noted above, it’s only when comparing three versions of a file that conflicts are even possible, so as long as you’re working from the latest repository version, you can do anything you want. This may be an option if there are a large number of conflicts and it would take longer to resolve them than to simply have one of the developers recreate his changes.

The other option is to reconcile the changes, and the only question is which developer will do the work, or whether they’ll do it together. In a distributed environment, working together might not be possible, in which case it usually falls on the developer who discovered the conflict to resolve it.
Whichever strategy you select, the key is to keep the lines of communication open. However you resolve it, you should remember that changes that have been successfully committed to the repository can never be lost, unless something is done to the repository itself.
[TBD – Discuss the various tools, and integrating them with WinCVS/TortoiseCVS.]
4. Patterns

4.1 Mainline
4.1.1 Purpose

To keep the number of currently active codelines to a manageable set and avoid growing the project’s version tree too wide and too dense. To minimze the overhead of merging. The purpose of a mainline is to have a « home codeline » on which to do all ongoing development except in special circumstances. Thus, major milestones (release versions) will be branched. Ongoing development for the next version will continue in the mainline. Bug fixes to the released version will occur in the branch, and any changes that need to be made in the ongoing stream will be merged back into the mainline.
4.1.2 Implementation

Branch when necessary, but merge branches back into the mainline often, and stop using them when they no longer serve a purpose. Use the branching and merging best practices discussed above. Merge every stable waypoint along the branch into the mainline, labeling merge points with a consistent naming convention. Don’t branch off a branch.
4.2 Active Development Line
4.2.1 Purpose
Software development is largely about balancing progress with stability. This pattern addresses the question: “how do you keep an evolving codeline stable enough to be useful?” The extremes are well defined and should be familiar to anyone with any development experience. First, if someone checks in a broken module, the entire team can be delayed until it’s fixed. At the other extreme, if pre-checkin validation requirements are too onerous, developers will commit less frequently, and submit multiple fixes at once, making it harder to back out changes later, and makes it more likely that another developer may have submitted an incompatible change in the interim. And stringent pre-checkin requirements don’t guarantee stability, and may provide a false sense of security. Your changes may be incompatible with the uncommitted changes of other developers, which may not be immediately apparent
.
4.2.2 Implementation
The key here is to decide how stable your codeline needs to be, which is, of course, the hard part. Keep in mind that perfection may be a laudable goal, but it’s neither practical nor attainable in a distributed development environment. The questions you need to answer are:
· Who uses the codeline?

· What is the release cycle?

· What test mechanisms are in place?

· How quickly is the system evolving?

· What are the real costs for a cycle where things are broken?

4.3 Codeline Policy

4.3.1 Purpose
The codeline policy pattern is meant to provide guidance to developers to help them determine which branch they should be working in, and what tests they need to perform before checking in. A release branch and an active development branch will have different standards for pre-checking testing. A good rule of thumb to follow when creating branches is to always branch on incompatible policies. Thus an active development line may have only a simple pre-checkin test (it must successfully build with the latest code from the repository), while a release branch may require that the fix passes the entire suite of regression tests. In such a case, a branch is clearly warranted.
4.3.2 Implementation

Decide on and document the policy for the codeline in question, and determine the owner. This pattern is implemented with branching, which has been extensively discussed elsewhere in this document. When there is no longer a reason to support a separate policy, the branch can be merged back into its parent and allowed to go dormant.
5. Tools

5.1 Cygwin

5.2 WinCVS

5.3 TortoiseCVS

5.4 KDiff

5.5 Guiffy
5.6 Eclipse
� Strictly speaking, the second tag can be any arbitrary tag, and doesn’t need to be the branch name. In that case, merge will only merge changes that have occurred between the two specified tags.

� This is a good place to move a tag rather than creating a new one. For example, you can create a tag of the form <<BRANCH_NAME>>_LAST_MERGED which you always move after a merge. As long as you remember to do so, you will always know which changes have already been merged.

� Consider the scenario where you make changes to your working copy, update from the repository to get last minute changes, run your tests successfully, and commit your changes. Meanwhile, before you commit your changes, another developer updates, tests successfully, and commits her changes. The incompatibility between your changes will not be apparent for some time, especially if other developers fail to update their working copy before running their tests.

January 27, 2004

Page 5 of 14

