NCI Center for Bioinformatics

Software Configuration Management Series:

Deployment Guidelines

Version 1.4
May 28, 2004
Revision History

	Date
	Version
	Description
	Author

	06/17/2003
	1.0
	First draft
	Originally adapted from the ISCS procedures by the NCICB Dedicated Support staff

	09/23/2003
	1.1
	Changes from working group.
	A. Devadas

	12/01/2003
	1.2
	Formatting changes.
	A. Devadas

	03/29/2004
	1.3
	Formatting changes, filling in TBDs
	D. Kanoza (SCM Administrator)

	05/28/2004
	1.4
	Adding Lessons Learned
	D. Kanoza (SCM Administrator)

Table of Contents

51.
Introduction

51.1
Purpose

51.2
Scope

51.3
Abbreviations and Acronyms

51.4
Related Documents

62.
Roles and Responsibilities

73.
NCICB Infrastructure

73.1
Core Resources

73.1.1
Application Servers

73.1.2
Relational Databases

73.1.3
LDAP Directory Services

83.1.4
Configuration Management Library

83.2
Environments

83.2.1
Development

83.2.2
QA

83.2.3
Staging

83.2.4
Production

94.
Application Deployment Process

94.1
Promotion A

94.2
Promotion B

94.3
Promotion C

104.4
Promotion D

104.5
Promotion E

104.6
Promotion F

105.
Artifacts

105.1
Deployment Request Form

105.2
Deployment Unit

115.3
Deployment Dependency Plan

115.4
Automated Build Change Request Form

115.5
Custom Web-based SCM Request Application

116.
Application Deployment Schedule

116.1
Normal Deployment

126.2
Expedited Deployment

136.3
Sample Deployment Scenarios

136.3.1
Normal Deployment Scenarios

146.3.2
Expedited Deployment Scenarios

147.
Automated Build Service

147.1
ANTHill

157.2
Build Script Specifications

168.
Appendix

168.1
Artifacts

168.1.1
Deployment Request Form

178.1.2
Deployment Instructions/Installation Guide Library

178.1.3
Automated Build Change Request Form

178.1.4
Deployment Dependency Plan

1. Introduction

1.1 Purpose

This document presents the standard operating procedures involved in deploying internally developed applications at NCICB. In order to fully understand the promotion process for deploying applications, it is essential that the actual NCICB application development and production infrastructure be understood. Consequently, the NCICB infrastructure is the first section to be discussed. Next, the process of promoting new application releases from development to production is presented. The various deployment artifacts used throughout the deployment process are detailed as well. Finally, the scheduling guidelines involved in handing off new applications from the development to systems group are explained.

1.2 Scope

This document strives to give general guidance on issues at a global NCICB level. As far as possible, it does not try to dictate specific policies on issues that only affect the project level.

1.3 Abbreviations and Acronyms

The following acronyms are used in this document:

· CVS – Concurrent Versions System

· CML – Configuration Management Library (Implemented using CVS)

· J2EE – Java 2 Enterprise Edition

· NCICB – National Cancer Institute, Center for Bioinformatics

· PC – Package Coordinator (See definition in following section)

· QA – Quality Assurance

· RMI – Remote Method Invocation

· SCM – Software Configuration Management

· SCMA – SCM Administrator (See definition in following section)

1.4 Related Documents

Other related documents in this series on SCM include the following:

· SCM - Overview

· SCM - NCICB Change Control Plan

· SCM - Version Control Guidelines

· SCM - Build Management Guidelines

· SCM - Deployment Guidelines (this document)

· SCM - Tools Quick Reference Guide

· SCM - CVS Users Guide

· SCM - CVS Administrative Guide

· SCM - Ant Users Guide

· SCM - ANTHill Users Guide

· SCM - Test Track Pro Users Guide

· SCM - Support Wizard Users Guide

2. Roles and Responsibilities

The various roles referred to in this document come from the “SCM – Version Control Guidelines”. Please refer to that document for clarification of role definitions and their associated responsibilities.

3. NCICB Infrastructure

A simplified view of the current NCICB infrastructure can be divided into a few logical core resource areas for discussion of application deployment. These core resources include application servers, relational databases, LDAP directory services, and the CM Library. Across the core resources, common environments are defined for Development, QA, Staging, and Production. The core resources and their associated environments are shown graphically in the following diagram:

[image: image1.wmf]APPLICATION SERVERS

Development

QA

Production

RELATIONAL DATABASE (ORACLE)

DEV

QA

PROD

LDAP (Novell eDirectory)

PROD

DEV

Staging

CM Library

CVS

Staging

Other Tools

Watch Fire

WUsage

Rational Rose

???

???

Baselining

Framework?

Sandbox

Integration

SupportWizard

Test Track Pro

ANTHill

NIghtly

3.1 Core Resources

3.1.1 Application Servers

The application servers are provided by a combination of Solaris, Windows 2000, and Linux servers. The application servers are used for developing, testing, and deploying NCICB custom built applications.

3.1.2 Relational Databases

The relational database services are currently provided by Oracle 8i; migration to 9i is under way. It is comprised of four separate instances of the Oracle DBMS: Dev, QA, Staging, and Prod. Dev instance is for use during development by the application developers using test data. QA instance is for use by the QA team and the users during all testing activities using test data. Staging instance is used for final user acceptance testing, demo, training, … Prod instance is for use once the application is in production and contains real business data.

3.1.3 LDAP Directory Services

The LDAP Directory Services are provided by Novell’s eDirectory. All applications can use the PROD LDAP unless the application needs to write to the directory in which case the application uses the TEST LDAP during development and testing activities. Currently, there are no QA or Staging LDAP servers; during the SCM working group no specific need for these services were identified.

3.1.4 Configuration Management Library

The CML contains all project artifacts that are under SCM control including software code, requirements documentation, design documentation, etc. The current implementation uses CVS to store these digital artifacts.

3.2 Environments

3.2.1 Development

The development environment can actually be separated into 3 functional areas, which are referred to as the Sandbox, Nightly, and Integration areas.

3.2.1.1 Sandbox

The Sandbox is a standalone area for developers to code and unit test programs on a daily basis. In our specific environment, each developer is provided with Windows 2000 and/or Solaris workstation(s) that supports sandbox development. Each workstation is loaded with various software development tools to support software application development in J2EE, ZOPE, PERL, Oracle, etc.
3.2.1.2 Nightly

The Nightly is an area that supports automated builds (i.e. continuous integration). Continuous integration is a best practice often used to identify integration problems early on in the project life cycle. In our environment, a build server automates the execution of scripts that build the various applications nightly; any broken builds are automatically emailed to the respective package coordinators. The Nightly area is actually not part of the promotion process, but is mentioned due to its significance to the development process.
3.2.1.3 Integration

The Integration area is used to perform system integration by developers. The developers can manually execute build scripts that will create a new application release and deploy it into an app server instance specific to their integration area.

3.2.2 QA

The QA area is used by the QA personnel for regression testing scheduled builds. The scheduled builds are created from labeled releases of the source by manually executing build scripts that will build the application and deploy them into an app server instance specific to their QA area.

3.2.3 Staging

The Staging area provides a mirrored production environment for performing acceptance testing before going to final release. This area is also intended as a testing/demo area for the application user community. Additionally, the systems group may use Staging for performing scheduled load/stress testing of deployed applications.

3.2.4 Production

The Production environment provides the area needed for deploying the final release of an application to the user community.

Note: Unfettered access by the development and QA personnel is permitted to all the areas of the development and QA environment. Access to Staging and Production environments are restricted to the systems group only. Deployments to Staging and Production must be approved by the SCM Administrator.
4. Application Deployment Process

A new application release is deployed to production through the promotion process described below:

[image: image2.wmf]APPLICATION SERVERS

Development

QA

Production

RELATIONAL DATABASE (ORACLE)

DEV

QA

PROD

LDAP (Novell eDirectory)

PROD

DEV

Staging

CM Library

CVS

Staging

Other Tools

Watch Fire

WUsage

Rational Rose

B

C

D

E

DU

DU

F

A

???

???

Baselining

Framework?

Sandbox

Integration

SupportWizard

Test Track Pro

ANTHill

NIghtly

4.1 Promotion A

After thoroughly unit testing an application, developers commit the code changes in their local Sandbox to the CML. Frequent commits of unit tested code is encouraged so that any integration problems are discovered as early in the development cycle as possible by the automated nightly builds as well as the manual integration builds.

4.2 Promotion B

Applications are promoted to the Integration area by the development team on an as desired basis. New builds are deployed by manually checking out the latest code from the CML and then executing scripts to build and deploy the application. The development team can then perform integration testing in preparation of a scheduled release to QA. Frequent integration testing is encouraged so that any integration problems are discovered as early in the development cycle as possible.

4.3 Promotion C

A new release candidate is promoted to the QA area for regression testing by the package coordinator. Before a release candidate is promoted to QA, the release must be labeled in the CML by the package coordinator (see “SCM - Version Control Guidelines” for further details on labeling conventions). Next, the labeled release is checked out of the CML and then the standard build script is manually executed to build and deploy that labeled release to the desired QA area. Finally, QA personnel perform all functional testing against the labeled release candidate.

4.4 Promotion D

After successful regression testing on QA, an approved release can be promoted to the Staging area for acceptance testing. Before a release is promoted, the package coordinator needs to fill out a Deployment Request form and give it to the SCM administrator. The SCM administrator will then create a Deployment Unit for delivery to the appropriate dedicated systems support staff for deployment to Staging. Finally, acceptance testing can be performed.

4.5 Promotion E

This is a demotion that can occur if a problem is found during regression or acceptance testing in the QA or Staging areas, respectively. The build is sent back to the sandbox area and must then work its way back through the promotion steps.

4.6 Promotion F

This is the last promotion step and signifies that the application is ready for release to the Production area. Before a release is promoted to Production, the package coordinator will need to approve the promotion by checking the appropriate approval field on the Deployment Request form and then giving it to the SCM administrator. The SCM administrator will then resend the Deployment Unit to the appropriate dedicated systems support staff for deployment to the Production area.

5. Artifacts

5.1 Deployment Request Form

The Deployment Request Form is used to request a promotion of a new release to the Staging and Production environments. The form consists of all the information necessary for building a Deployment Unit for the new release and then deploying it to the necessary production areas. A sample of the Deployment Request Form appears in the Appendix section.

5.2 Deployment Unit

The deployment unit is the collection of artifacts needed to promote an application from the development environment to the production environment. The elements should be tarred up with the tar file given a file name using the following format: <app name>_<release#>. The deployment unit tar file should include the following pieces:

Bin – This directory contains binary executables that need to be deployed into the production environment (e.g. .wars, .jars, PERL CGI scripts, etc…). Any start/stop scripts should also be included here.

Conf – This directory contains any other configuration files that need to be deployed/modified before restarting the new release. Note that in the case of J2EE web applications, most configuration files will be placed under the /<application>/WEB-INF directory of the application and therefore can’t be configured until after deployment.

Docs – This directory contains deployment related documentation. This should include at a minimum the following:

Docs/INSTALL.txt: This document contains the instructions needed to install and configure the application in the production environment.

Docs/TEST.txt: This document contains a set of tests that can be run by the person installing the application to verify the application has been installed successfully. This is not intended to be system or functional test scripts.

Docs/README.txt: This document contains the release notes for the application. This should include a bill of material for all artifacts in the install directory, and a list of changes to the application if this is a subsequent production release.

Lib – This directory contains any application specific library dependencies that may not be part of the standard production environment. Note that in the case of J2EE web applications, most application specific libraries will be included in the /<application>/WEB-INF/lib directory.

The completed deployment unit consists of the aforementioned tar file and the associated Deployment Request form.

5.3 Deployment Dependency Plan

The Deployment Dependency Plan contains information concerning the various internal and external software dependencies for a specific product release. This document is especially useful in the case of complex aggregate projects with many independent subprojects. The SCM administrator will use this document to determine the order of deployment of the various subprojects in conjunction with the systems staff. See the appendix for the form deployment dependency document template.

5.4 Automated Build Change Request Form

This form is used to request changes to the automated build process for a specific process. By default, new projects do not have the automated build service enabled. This request form can be used to request enabling of the build service for new or existing projects. It can also be used to disable the service, change time/periodicity of the builds, change email notification lists, specify whether to run unit tests, … See the appendix for the form template.

5.5 Custom Web-based SCM Request Application

The intent of the Custom Web-based SCM Request Application is to help automate the request/approval process for SCM related requests including the deployment type requests previously described. The SCM Request Application is currently still in the proposal stage; you may contact the SCM administrator to find out the current status.

6. Application Deployment Schedule

6.1 Normal Deployment

This is the default deployment schedule for all application changes, including Tomcat application, database changes, and other system modifications needed for an application.

	Monday
	Tuesday
	Wednesday
	Thursday
	Friday

	8-9am Staging Window
	8-9am Production Window
	8-9am Staging Window
	8-9am Production Window
	8-9 Staging Window

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	1-2pm Staging Window
	
	1-2pm Staging Window
	

	
	
	
	
	

	3 pm Deadline for final approval for deployments to production

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

· All deployments will occur during a scheduled window.

· Deployments to staging will occur in the next available scheduled window, following a 24-hour review period of the approved change request form by the Systems team. During the review period, the submitted request may be returned to the Development team for additional information. There is no set deadline for normal deployment requests – the 24-hour review period will always apply though.

· The application code must have undergone more than 24 hours of testing in the staging environment prior to its migration to production – As an example, this means that applications deployed to staging on Wednesday morning cannot be migrated to production in the Thursday production window.

· The change control manager must submit the final approval to the Systems team by 3:00 pm on the day before an application is to be deployed into production.

· If the deployment procedures differ from staging to production, an additional change request document must be provided with accurate instructions. Also, if the provided instructions were insufficient or problems were encountered during the deployment to staging, the Systems team can that request corrections be made to the form. Otherwise, the original deployment instructions from the initial change request form are sufficient.

· Following the deployment of an application to production, there is a 24-hour period in which the Development team can request a ‘rollback’. The Systems team would revert to the previous version of the application in the event that a major bug was discovered that adversely affected functionality for end users.

6.2 Expedited Deployment

Expedited deployments are used when the requested changes will not have an impact on other applications. This will typically be used for static content updates, such as a Zope deployment, but could also apply to other application modifications as well, depending on the situation. An individual developer can request that a change form be put through the expedited schedule, but the final decision to request an ‘Expedited Deployment’ will come from the change control manager for the Development team. If the Systems team feels that the requested deployment may impact other applications, they will work with the change control manager to resolve the situation.

	Monday
	Tuesday
	Wednesday
	Thursday
	Friday

	8-9am Staging Window
	8-9am Production Window
	8-9am Staging Window
	8-9am Production Window
	8-9 Staging Window

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	1-2pm Staging Window
	
	1-2pm Staging Window
	

	
	
	
	
	

	3 pm Deadline for “next business day service” of expedited deployment requests

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

· All deployments will occur during a scheduled window.

· Static content updates, and those changes that will not affect other applications, can use the expedited deployment process.

· Once the approved change request is submitted for review by the Systems team, the deployment to staging will occur in the next business days’ scheduled window, provided no additional information is needed from the Development team.

· The deadline for submitting requests for an expedited deployment is 3:00pm on the day before an application is to be deployed to staging. Requests received after the deadline will not be processed until the second available deployment window. This also applies to the receipt of final approval for deployments to production.

· After the content update has been deployed into staging, there is a testing period of at least one business day, during which the Development team can verify that their changes are functioning properly. It is the responsibility of the Development team to perform all necessary testing and to inform the Systems team of problems that would prevent migration of the content to the production systems.

6.3 Sample Deployment Scenarios

6.3.1 Normal Deployment Scenarios

6.3.1.1 Example #1

An approved change request to deploy a new Tomcat application is submitted to the Systems team for review on Wednesday at 3:30pm. Following the 24-hour review period, the earliest the application would be deployed to the staging environment is the Friday 8am window. Assuming the application successfully completed all QA testing, the change control manager could submit final approval by 3:00pm on Monday, and the new code would then be deployed to production on Tuesday morning.

6.3.1.2 Example #2

An approved normal change request is submitted to the Systems team at 9:30pm on Thursday night. The 24-hour review period follows, and the next available staging deployment window is Monday morning at 8am. Since the application must be in testing for more than 24 hours, the earliest possible window for deployment to production is Thursday at 8am, provided the final approval had been submitted by 3pm on Wednesday.

6.3.1.3 Example #3

A change request for a Tomcat application is submitted to the Systems team for review on Thursday at 10am. However, no instructions were provided on how to install a new component of the application code. The change request is returned to the Development team for clarification, and will need to be resubmitted.

6.3.1.4 Example #4

An application is deployed to the production environment on Tuesday at 8am. The deployment was successful, and the supplied test cases did not yield any errors. However, a serious flaw is discovered later on Tuesday afternoon after some end-users complain of difficulties using the application. If the Development team determines that the resolution to this problem cannot wait to go through the change request process again, they can request that the Systems team ‘roll back’ the most recent deployment to the previous version of the application. Any future modifications to this application will then need to go through the change request process again, beginning with deployment to the staging environment.

6.3.2 Expedited Deployment Scenarios

6.3.2.1 Example #5

An expedited change request is submitted to the Systems team for a ZOPE site on Wednesday at 11:00am. The next available deployment window for this change is the following business day, Thursday at 1pm. After the required testing period of one business day in the staging environment, the next available production deployment window would be Tuesday at 8am.

6.3.2.2 Example #6

An expedited request is submitted to the Systems team at 4:30pm on Friday afternoon. Because this request was submitted after the “next business day service” deadline, the content update cannot occur in the next deployment window, which would have been Monday at 8am. It will occur in the Tuesday 1pm staging deployment window.

7. Automated Build Service

The automated build service is a completely optional service for all NCICB projects. By default, new projects do not have the automated build service enabled. The Automated Build Change Request form can be used to request enabling of the build service for any new or existing projects. See the appendix for the Automated Build Change Request form template.

7.1 ANTHill

ANTHill has been chosen to be the automated build server for NCICB. Some of its features include the following:

Controlled Build Server:

· means to track every build

· ability to recover and reproduce any build

· hands-off operation

· Platform for sharing knowledge about software assets:

· central location for project websites including documentation, javadocs, project downloads, etc.

· automatic email notification of build status to interested parties

· Process automation tool:

· automates the build process (nightly builds)

· can run unit tests with every build

· generates source code metrics with every build

eXtreme Programming tool:

· implements continuous integration

· can run unit tests with every build

· tool for code reuse:

· supports dependencies between projects

· implements Reuse/Release Equivalence Principle

The following diagram visually describes how ANTHill works:

[image: image3.png]How Anthill Works

3. Increment build o

1. Getlatest version

Source
Repository
(CS, Perforce,etc)

4 Tagwibuid ro.

6.Copy.
fles

7. Send emals

ANT Email Server

7.2 Build Script Specifications

The AntHill build management server is flexible enough to work with projects that have Ant, Maven, or Make-based build scripts, and can even work with shell scripts as well. Integration with AntHill will be determined on a project-by-project basis. Any project using one of the above build tools can easily be integrated with AntHill, although teams are strongly encouraged to use either Ant or Maven.
Appendix

7.3 Artifacts

7.3.1 Deployment Request Form

	Deployment Request
	#    

	Submitted by
	     
	Date
	     

	Application
	     
	Release
	     

	CVS

	Code Repository
	Module
	     
	Tag
	     

	Deployment Repository
	Module
	     
	Tag
	     

	Dependencies

	Software
	     

	Hardware
	     

	Database
	     

	Additional Instructions

	Additional deployment instructions
	     

	Additional post-deployment test case instructions
	     

	Proposed deployment to staging

	Date
	      — FORMDROPDOWN

	Server(s)
	     

	Alias
	     

	App Server
	     

	Other info
	     

	Approval For Promotion to Production

	Date
	     

	Decision
	 FORMCHECKBOX
 Approved

 FORMCHECKBOX
 Not Approved

	Approved by
	     

	Proposed deployment to production

	Date
	      — FORMDROPDOWN

	Server(s)
	     

	Alias
	     

7.3.2 Deployment Instructions/Installation Guide Library
Rather than repeating deployment instructions every time a deployment request is filled out, the SCM group plans to create a library of deployment instructions and/or installation guides for each application, for each tier (dev, qa, stage, and prod). This will simplify the deployment request, and allow us to version control deployment instructions as well.

7.3.3 Automated Build Change Request Form

For now, changes to the automated build process are best handled in discussion with the SCM Administrator either via email or telephone. Please contact the SCM Administrator if you wish to make any changes to the automated build process for your application (frequency, JDK, build target, etc.)
7.3.4 Deployment Dependency Plan

As part of the Architectural Review Checklist that all NCICB applications are being asked to complete, the SCM group is attempting to identify deployment dependencies between projects. The purpose of such a plan is to identify and address potential deployment conflicts before they occur.
In addition, the SCM group is in the preliminary stages of identifying those applications that have external dependencies on the configuration of the web or application container that host them. It is the goal of the SCM initiative that all applications will be self-contained, wherever possible. Thus any application that expects to find resources in the host container’s classpath will be examined closely to discover whether such dependencies can be eliminated. Although this could lead to duplication of resources (especially where more than one application references the same external resource), it will in the long run make it much easier to upgrade or switch to a new container.
[image: image4.png]

_1125897123.vsd

_1125897154.vsd

