NCI Center for Bioinformatics

Software Configuration Management Series:

Version Control Guidelines

Version 1.4
May 27, 2004
Revision History

	Date
	Version
	Description
	Author

	06/06/2003
	1.0
	First draft
	NCICB Dedicated Support

	09/23/2003
	1.1
	Changes from working group.
	A. Devadas

	12/01/2003
	1.2
	Formatting changes.
	A. Devadas

	03/30/2004
	1.3
	Formatting changes, filling in TBDs
	D. Kanoza (SCM Administrator)

	05/27/2004
	1.4
	Inserting lessons learned

	D. Kanoza (SCM Administrator)

	
	
	
	

	
	
	
	

Table of Contents

51.
Introduction

51.1
Purpose

51.2
Scope

51.3
Key Concepts and Terminology

61.4
Abbreviations and Acronyms

71.5
Related Documents

7Roles and Responsibilities

71.6
Roles

81.7
Functions

91.8
Privilege Mappings

101.9
Administrative Requests

102.
Branching Policy

102.1
Codeline per Release

102.1.1
Context For Use

102.1.2
How it works

112.1.3
Advantages

112.1.4
Disadvantages

12Labeling Conventions

122.2
Major/Minor Release

122.3
Patch Release

122.4
Candidate Release

122.5
Developer Tag

133.
Artifact Naming Conventions

134.
Repository Layout

134.1
Top Level Structure

134.2
Package Templates

144.2.1
J2EE Web Application

164.2.2
ZOPE Web Application

164.2.3
RMI Application

174.2.4
Generic Web Application

174.2.5
Oracle Designer Application

174.2.6
PERL Web Application

174.2.7
Python Web Application

174.2.8
Generic Fat Client/Server application

174.2.9
Visual Basic Fat Client/Server application

174.2.10
C++ Application

175.
Best Practices

175.1
Branching

175.1.1
Branch by Major and Minor Release

175.1.2
Bug Fix Branching

185.1.3
Avoid Task Branches

185.1.4
One Local Work Space Directory per Codeline

185.2
Labeling

185.2.1
Never Move or Delete Labels

185.2.2
Use Developer Tags for Sharing Stable Intermediate Versions

185.2.3
Tag Entire Packages not Individual Files

185.3
Committing

185.3.1
Commit Frequently, but only after Thorough Testing

195.3.2
Commit Fine-Grained Tasks

195.3.3
Do Not Commit During the Nightly Build Cycle

195.4
Miscellaneous

195.4.1
Update Workspace Frequently

195.4.2
Put 3rd Party Code in a Separate Codeline

195.4.3
Fix Nightly Builds ASAP

196.
Off-site Development

197.
Non-Java Based Applications

197.1
Oracle Designer Applications

208.
Tools

21Appendix A

218.1
Administrative Request Forms

218.1.1
User Request

218.1.2
Package/Module Request

218.1.3
Branch Request

218.1.4
Tag/Label Request

218.1.5
Custom Web-based SCM Request Application

1. Introduction

1.1 Purpose

Most every definition of Software Configuration Management (SCM) includes the concept of artifact versioning; in fact, it could be argued that version control is the most essential component of any functioning SCM system
. This document presents the standard policies and procedures for performing version control for internally developed applications at NCICB. More specifically, this document covers the roles and responsibilities involved in version control, the specific process flows, general policies, branching policy, and repository layout.

1.2 Scope

This document strives to give general guidance on issues at a global NCICB level. As far as possible, it does not try to dictate specific policies on issues that only affect the project level. For instance, guidance is given concerning labeling conventions for releases since this does affect the global deployment process for NCICB software. However, the naming conventions of specific items/artifacts under version control are not specified, but are rather left to the individual project teams to decide upon.

1.3 Key Concepts and Terminology

	Term
	Description

	Repository

(aka Configuration Management Library)
	The repository stores a complete copy of all the project source files and other artifacts that are under version control. In other SCM documents in this series, the repository may be more formally referred to as the Configuration Management Library (CML).

	Package

(aka Module)
	A package is a top-level node off the repository root. A package contains all files associated with a specific project. Packages are more commonly referred to as modules.

	Development Workspace
	Refers to the local copy of a repository package used for development.

	Codeline

(aka Branch)
	A codeline is a progression of the set of source files and other artifacts that make up a package as it changes over time. A package may have multiple codelines at any given time, each containing every version of every artifact along one evolutionary path.

	Task Branch
	A task branch refers to a new codeline branch created for the purpose handling a course-grained task. We suggest that task branches be avoided as far as possible and branching only occur for new releases.

	Label

(aka Tag)
	A label refers to a specific tagging of all the files that constitute a package at strategic points in the development life-cycle, such as code freezes, candidate releases, production releases, a patch releases, developer tags, etc.

	Workspace Update
	Refers to the act of re-synchronizing a local working directory from the repository sources and artifacts.

	Task-Level Commit
	Refers to the act of writing local working directory changes to the repository.

	Change Task
	

	Third Party Codeline
	Refers to 3rd party software that is stored within the repository.

	Checkout
	Refers to the act of retrieving code from the repository into a local working directory.

	Revision
	Revision refers to a specific version of a file under version control management.

	Release
	Release refers to a specific version of a package under version control management.

	Minor Release
	Refers to a package release containing minor feature enhancements. New minor releases are designated by incrementing the minor release number (e.g. 1.1, 1.2, 1.3…). See section on Branching for further details.

	Major Release
	Refers to a package release containing major feature enhancements. New major releases are designated by incrementing the major release number (e.g. 1.0, 2.0, 3.0…). See section on Branching for further details.

	Patch Release
	Refers to a package release containing bug fixes and no feature enhancements. New patch releases are designated by incrementing the patch release number (e.g. 1.0.1, 1.0.2, 1.0.3…). See section on Branching for further details.

	Unit Test
	A unit test refers to a test of a specific application component to see if remediation efforts were successful. The unit test does not test how well the application component will work with other application components.

	Regression Test
	Regression test refers to the process of validating modified software to detect whether new errors have been introduced into previously tested code, and to provide confidence that the modifications are semantically correct.

	Smoke Test
	A smoke test refers to the first run of a complete piece of software after construction or a critical change. The goal of a smoke test is to minimally validate that an application/system does run correct without a major explosions.

1.4 Abbreviations and Acronyms

The following acronyms are used in this document:

· CVS – Concurrent Versions System

· CML – Configuration Management Library (Implemented using CVS)

· J2EE – Java 2 Enterprise Edition

· NCICB – National Cancer Institute, Center for Bioinformatics

· PC – Package Coordinator (See definition in following section)

· RMI – Remote Method Invocation

· SCM – Software Configuration Management

· SCMA – SCM Administrator (See definition in following section)

1.5 Related Documents

Other related documents in this series on SCM include the following:

· SCM - Overview

· SCM - NCICB Change Control Plan

· SCM - Version Control Guidelines (this document)

· SCM - Build Management Guidelines

· SCM - Deployment Guidelines

· SCM - Tools Quick Reference Guide

· SCM - CVS Users Guide

· SCM - CVS Administrative Guide

· SCM - Ant Users Guide

· SCM - ANTHill Users Guide

· SCM - Test Track Pro Users Guide

· SCM - Support Wizard Users Guide

Roles and Responsibilities

1.6 Roles

The key roles involved in version control are described in the following table:

	Role
	Description

	SCM Administrator
	The SCM Administrator has overall responsibility and authority over all packages in the repository.

	Package Coordinator
	The package coordinator is responsible for a specific package in the repository. A package can have more than one coordinator.

	Developer
	The developer is responsible for creating and modifying the contents of a package.

	Reader
	The reader has read-only access to packages within the repository.

Hence, the accountability hierarchy is very simple given the roles just defined and can be visually depicted as in the following diagram:

[image: image1.png]
The SCM administrator sits at the top of the hierarchy. Under the SCM administrator are the package coordinators. For each top-level package, there are one or more coordinators responsible for it. If a large package has major sub-packages then there could be coordinators for those sub-packages that are accountable to the top-level package coordinators. Finally, developers and readers are at the leaf nodes. If a developer does not have sufficient privileges to perform a certain function then it is passed up to the package coordinator to perform. In turn, if the package coordinator does not have sufficient privileges to perform a certain function then it is passed up to the SCM Administrator. The section on “Administrative Requests” further details the specifics of requesting administrative action.

1.7 Functions

The list of version control functions are described in the following table:

	Functional Group
	Function
	Description

	Package
	Create
	The ability to create a package.

	
	Delete
	The ability to delete a package.

	
	Read
	The ability to retrieve the contents of a package.

	
	Modify
	The ability to modify a package meta information.

	
	
	

	File
	Create
	The ability to create a file/directory within a specific package.

	
	Delete
	The ability to delete a file/directory within a specific package.

	
	Read
	The ability to retrieve a file/directory within a specific package.

	
	Modify
	The ability to modify a file/directory within a specific package.

	
	
	

	User
	Create
	The ability to create users of the repository.

	
	Delete
	The ability to delete users of the repository.

	
	Modify
	The ability to modify users of the repository.

	
	
	

	Branch
	Create
	The ability to create a new codeline for a package.

	
	Delete
	The ability to delete a codeline for a package.

	
	Modify
	The ability to modify the codeline information for a package.

	
	Merge
	The ability to merge the contents of one codeline onto another codeline.

	
	
	

	Label
	Create
	The ability to create label for a package.

	
	Delete
	The ability to delete label for a package.

	
	Modify
	The ability to modify label for a package.

1.8 Privilege Mappings
The role to function privilege mappings are described in the following table:

	Role
	Default Privileges
	Possible Extended Privileges

	SCM Administrator
	All the privileges allowed.
	

	Package Coordinator
	All the privileges of a developer plus:

Label Create.
	File Delete

	Developer
	All the privileges of a reader.
	File Create

File Modify

Branch Merge

Label Create (For developer tags)

	Reader
	Package Read

File Read

(aka checkout privileges)
	

As you will notice from the permission mappings table, all package, user, and branch functions are restricted to the SCM administrator only. The package coordinator has privileges to create labels but not to delete labels. In fact, deletion of labels (and branches) is something that should be avoided even by the SCM administrator unless absolutely necessary. A preferably small number of "key" developers of a package may also be allowed to assign so-called "developers tags" that allow other developers to share intermediate versions during the construction phase. This does not imply that all who have commit access, should automatically have tag access. Only the corresponding package coordinator should assign release labels.

Implementation Note: Currently, we are using the Concurrent Versions System (CVS) to perform version control at NCICB. For all its admirable features, the standard distribution of CVS does have a few shortcomings especially when it comes to security. As such, enforcing the version control privileges outlined in this section will be left to user self-managed policy rather than enforcement with CVS itself. There is a patched version of CVS that is currently being prototyped at NCICB, which adds several security features to CVS and should help in enforcing several of the policies outlined in this section.

Lesson Learned: The above-mentioned patch has not been applied since it is not part of the officially supported CVS code base. Short of actually changing the files within the repository itself, nothing anybody does is permanent, so strong security for internal development activities is not critical.
1.9 Administrative Requests

As previously mentioned, all package, user, and branch functions are restricted to the SCM administrator only. A developer or package coordinator may request that the SCM administrator perform these types of administrative actions on their behalf by filling out the appropriate request form and forwarding it to the SCM administrator. The appendix contains form templates for the various requests types. Also, still in the proposal stage is a custom web-based SCM request application, which will help automate the request process.

2. Branching Policy

Branching is one of the most vital parts of version control policy. Many papers as well as entire books have been written on branching strategies for SCM. Consequently, it shouldn’t be surprising that there are many different branch creations patterns to choose from including: Policy Branch, Branch per Task, Codeline per Release, Subproject Line, Virtual Codeline, Remote Line, Component Line, Platform Line, etc. For NCICB, we recommend using the “Codeline per Release” pattern. Following is a description of this specific branching pattern and some of its advantages and disadvantages.

2.1 Codeline per Release

2.1.1 Context For Use

At NCICB, during the course of most development projects, there is a need to develop and maintain several software releases simultaneously. Work tasks are often organized around the various releases delivery dates and their milestones. It would be preferable if the branching structure were able to readily accommodate the organization of the work tasks performed by developers working toward the common goal of a release. As we shall see the Codeline per Release pattern does accommodate this sort of development environment.

2.1.2 How it works

Codeline per Release is a straightforward pattern to understand. Basically, for each planned major and minor release, a separate codeline is created. Patch releases do not create new codelines, but they are propagated along the same codeline for that specific major/minor release. The following diagram is a visual representation of this branching pattern:

[image: image2.png]
There are essentially two ways of doing “Codeline per Release”: you can use Early Branching or Deferred Branching. With early branching, you will create a codeline as soon as efforts toward a new release begin to take place. With deferred branching, a new codeline is created only when changes specific to that release begin to take place.

For example, a bug fix might be needed both for release 1.1 as well as release 2.0. With early branching, that bug fix would go into both the 1.1 and 2.0 release-lines (possibly creating the 2.0-line if it didn't already exist. With deferred branching, if the 2.0-line didn't exist yet, the bug fix would go into the 1.1-line only and creation of the 2.0-line would be deferred until efforts began for a fix or feature that was needed only for release 2.0 (or later).

2.1.3 Advantages

The Codeline per Release pattern has the following advantages:

At NCICB, major and minor releases often need to have their maintenance and development tasks occur simultaneously, in parallel with one another. This branching structure more closely reflects the organization of work efforts for the various releases of the software. To be sure, labels will be used to tag stable configurations ready for release. But baseline labels alone are insufficient to help structure workflow for a specific release.

This pattern of branching only on major and minor releases helps to resist the hyper branching scenarios often seen when branching by patch or bug fix.

This pattern is fairly straightforward to understand and implement. Given our use of CVS at NCICB, it is preferable to simplify the branching policy used as much as possible since CVS support for branching and merging is not as sophisticated as with some other commercial tools.

2.1.4 Disadvantages

The major disadvantage that is often identified for the Codeline per Release pattern has to do with merging changes between multiple release lines. Additional integration effort is definitely required when propagating changes needed by multiple release lines from earlier releases to subsequent releases. If the propagation hierarchy grows to a depth of three or more, this can impose a noticeable amount of integration overhead. However, we tend to feel that this overhead is unavoidable if a specific project has the need to maintain multiple release lines simultaneously. Merging does cause integration overhead, but some amount of integration is essential for verifying and validating that a change to a release is suitable for shipment to customers. Finally, it is worth noting that Deferred Branching helps to mitigate this risk, but not to eliminate it.

Labeling Conventions

2.2 Major/Minor Release

New major or minor releases are labeled using the following naming convention:

<module_name>_<major#>.<minor#>.0

For example, if a package called GEDP were ready to be labeled for release 2.1, it would be labeled as follows:

GEDP_2.1.0

2.3 Patch Release

New patch releases are labeled using the following naming convention:

<module_name>_<major #>.<minor #>.<patch #>

Each time a new patch is released the current patch # is incremented by 1. For example, if the current release of GEDP were at 2.1.5, the next patch release would be labeled as follows:

GEDP_2.1.6

2.4 Candidate Release

New patch releases are labeled using the following naming convention:

<module_name>_<major#>.<minor#>.<patch#>_RC<rc #>

Each time a new candidate is released the current release candidate # is incremented by 1. For example, if the current release candidate for GEDP were at 2.1.7_RC4, the next release candidate would be labeled as follows:

GEDP_2.1.7_RC5

2.5 Developer Tag

Developer tags are used at the discretion of developers who have privileges to create labels. Developer tags allow developers to share intermediate versions during the construction phase. A developer tag uses the following naming convention:

<module_name>_<major#>.<minor#>.<patch#>_DT_ <Dev Label>

The <Dev Label> portion is completely at the discretion of the developer. It could include dates, milestone indicators, new feature additions, etc. Some examples of developer tags are as follows:

· GEDP_2.1.7_DT_10-13-03

· GEDP_2.1.7_DT_StableBuildForNewXMLParser

· GEDP_2.1.7_DT_CodeFreeze

· GEDP_2.1.7_DT_Alpha3

· GEDP_2.1.7_DT_Beta5

3. Artifact Naming Conventions

The naming convention for specific items/artifacts under version control is out of scope for this document. Project teams are recommended to reference the IEEE or other standards documents for guidance on artifact naming conventions.

4. Repository Layout

This section provides recommendations on how to structure the physical directory layout for the repository. These recommendations take into consideration the use of CVS at NCICB and any of its specific idiosyncrasies.

4.1 Top Level Structure

Rather than, as recommended below, create a separate directory structure per release, the SCM Initiative will be leveraging the branching and labeling capabilities of CVS. Thus there will be only a single directory structure for each project, and releases will be indicated by tags. Creating a separate structure for each major or minor release is conceptually simpler, but has the huge disadvantage that any two particular releases may differ only by a few patched files, meaning duplicate files will abound, and propagating changes between versions will have to be done manually.
The following section is out of date:
At the top most level is the repository “ROOT”. Under the ROOT, each package (i.e. project/application) will have a directory created for it. Under a top-level package directory, each codeline (i.e. major/minor release branch) will have its own subdirectory. Within each release directory, the directory layout will follow the guidelines for the template type associated with that specific package.

For example, an RMI application called “CABIO” with current releases 1.0, 1.2, & 2.0 would have a directory structure under ROOT as follows:

[image: image3.png]

Recommendations for the various package templates are discussed in the next section.

4.2 Package Templates

The following package templates give guidelines on the directory layout for various types of applications:

Great effort was put into creating a generic structure that would be usable for all types of applications, Java-based or otherwise. The ultimate point of a directory structure is file organization, to allow developers, SCM team members, systems staff, etc., to easily find the resources they are looking for. It is entirely possible to reinvent directory structures for each new project, but a well-thought out directory structure should be reusable and flexible enough to accommodate future changes.

In addition, following a standard directory structure and combining it with a well-designed Ant build script allows teams to re-use the same build script from project to project, without any modification.

Lesson Learned: Most IDEs have some preferred standard layout, which is usually based on Sun’s servlet spec recommendation to some degree. For the most part, the build script can abstract details of the actual file layout, so having a standard structure becomes less important in the long run. The benefits noted above do still hold, but they are outweighed by the potential difficulties getting a particular IDE to work with a non-preferred file layout. Teams are encouraged to follow a reasonably coherent and transparent directory structure. The SCM staff will be more than happy to assist teams in creating a useful structure.
4.2.1 J2EE Web Application

Summary:

	Name
	Description/Contents

	<module>
	Root directory of project

	<module>/src
	Project source files.

	<module>/src-gen
	Generated project source files (not version controlled). Alternatively, this can be placed under the tmp directory.

	<module>/conf
	Project configuration files.

	<module>/lib
	.jar or other supporting library files required by your application

	<module>/scripts
	Any scripts your project uses (other than build scripts)

	<module>/readme
	Application readme files, user’s guides, installation instructions, etc.

	<module>/build
	Compiled class or object files.

	<module>/distrib
	Root folder for application distribution or deployment unit

	<module>/ui
	Root for all user-interface code (web apps). For thick-client apps, ui code should be in the src directory.

	<module>/test_results
	Test results from automated tests.

	<module>/tmp
	Temporary files or working directory

	<module>/build.xml
	Ant build script.

Detail:

	Name
	Description/Contents

	<module>
	Root directory of project

	<module>/src
	Source files

	<module>/src-gen
	Generated source files (not version controlled). Alternatively, can be placed under the tmp directory.

	<module>/conf
	Project configuration files

	<module>/conf/dev
	Config files specific to dev platform

	<module>/conf/qa
	Config files specific to qa platform

	<module>/conf/stage
	Config files specific to stage platform

	<module>/conf/prod
	Config files specific to prod platform

	<module>/conf/common
	Common config files.

	<module>/conf/web
	web.xml, application.xml, etc.

	<module>/lib
	.jar files required by your application

	<module>/scripts
	Any scripts your project uses (other than build scripts)

	<module>/readme
	Readme files for your application

	<module>/build
	The root directory for project builds.

	<module>/build/bin
	Compiled .class or object files

	<module>/build-gen
	Root directory for compiled generated files

	<module>/build-gen/bin
	.class files compiled from generated source code. Alternatively, can be placed under the tmp directory.

	<module>/distrib
	Root folder for application distribution or deployment unit

	<module>/distrib/conf
	Configuration files specific to the target environment, not application config files.

	<module>/distrib/ear
	Enterprise archives

	<module>/distrib/war
	Web archives

	<module>/distrib/jar
	Java archives

	<module>/distrib/bin
	Other binary files (.exe, etc.)

	<module>/distrib/doc
	Application documentation (Javadoc, user’s guides, etc.)

	<module>/distrib/readme
	Deployment instructions, release notes, installation and build instructions, etc.

	<module>/ui
	Root for all user-interface code (web apps). For thick-client apps, ui code should be in the src directory.

	<module>/ui/css
	CSS files

	<module>/ui/images
	Image files

	<module>/ui/jsp
	JSP pages

	<module>/ui/html
	HTML pages

	<module>/ui/scripts
	Javascript or other client-side script modules

	<module>/test_results
	Test results

	<module>/tmp
	Temporary files or working directory

	<module>/tmp/src-gen
	Generated source files

	<module>/tmp/build-gen/bin
	Class or object files compiled from generated source

	<module>/build.xml
	Ant build script.

4.2.2 ZOPE Web Application

After consideration, it has been decided that ZOPE websites will not be stored in CVS. The zexp files are binary, which means that CVS’s diff utility does not work. In addition, it is not anticipated that there will ever be a reason to roll back a site to some arbitrary version from the past. Any rollbacks that occur will only go as far as the previous version, which is archived by the Systems Team and automatically backed up each evening. Zope websites will still follow the SCM Initiative Deployment procedures, however.

The following section is out of date:
ZOPE objects are not currently maintained under the NCICB CML. However, there is a desire to store the ZOPE website export (zexp) under version control. In this case, we would be storing a single file for each ZOPE website. Furthermore, since there is only one simultaneous release of a ZOPE website being maintained at any given time, there is no true need for release subdirectories. Hence, under the ROOT directory, there will be a top-level “ZOPE” directory. Under the ZOPE directory would reside a directory for each of the different ZOPE websites. Within each website directory, there would exist a single zexp file. Hence, the directory layout for ZOPE applications may look like the following diagram:

[image: image4.png]
4.2.3 RMI Application

See above.
4.2.4 Generic Web Application

See above.
4.2.5 Oracle Designer Application

Specific directory layout for these applications is left to the discretion of the team, possibly driven by the IDE’s preferred structure.

Teams are encouraged to consult with the SCM Administrator to discuss the appropriate level of version control for Oracle Designer applications, but they are encouraged, so far as Oracle Designer supports it, to follow the same tagging and branching strategy as all other application types.

As far as implementation details within Designer, it is strongly recommended that separate branches (i.e. subfolders) be created for each major/minor release under a specific application folder. Following this branching policy within Designer, will not only be helpful in the exporting of code for storage in the NCICB CML, but it will also help alleviate the pains in making patch releases while maintaining multiple simultaneous releases of a specific application.

4.2.6 PERL Web Application

Since Perl is interpreted rather than compiled, the compressed version of the directory structure outlined above is more appropriate.
4.2.7 Python Web Application

As with Perl projects, Python projects are probably best served by a compressed version of the directory structure.
4.2.8 Generic Fat Client/Server application

Most likely, the structure outlined above will suffice, especially for Java-based applications.
4.2.9 Visual Basic Fat Client/Server application

The Visual Studio IDE has its own simplistic structure (source files are all kept in the same directory; compiled binaries are in another, one directory per build target); since it manages project files for the developer, there isn’t usually any need to impose an underlying file-system structure.
4.2.10 C++ Application

The generic structure outlined above should suffice for C++ applications. However, if they are being developed in the Visual Studio IDE, see the discussion above for Visual Basic applications.
5. Best Practices

This section describes various best practice recommendations for performing version control at NCICB.

5.1 Branching

5.1.1 Branch by Major and Minor Release

As discussed previously, branching generally should only be done for major and minor releases, although minor releases may be able to be accommodated within a major release branch and thus won’t require a separate branch of their own. Branching by release allows development to continue along the main line, and provides developers with a stable work area in which to deliver patches to the released code base.
5.1.2 Bug Fix Branching
Branching by bug fix should be avoided unless strictly necessary, since it commonly leads to over branching and a lot of merging overhead. However, branching is a legitimate tool and should be used where appropriate. A good reason for bug-fix branching is when a particular fix requires coordinated updates to a large number of files that need to be committed as a unit rather than piecemeal.
5.1.3 Avoid Task Branches

Branching by work task should be avoided since it commonly leads to over branching and a lot of merging overhead. Actually, there is not a compelling need to branch by task since the use of local workspaces effectively provides the same function. Task branches are conceptually similar to bug fix branches, and should only be used for the same reasons – the task requires coordinated changes to a large number of files, and any piecemeal commits will destabilize the codeline.
[SCM note: using local workspaces may not give you sufficient isolation for certain classes of change, and it doesn’t as easily support rolling back to a previous configuration should the change prove to be disastrous.]

5.1.4 One Local Work Space Directory per Codeline

The developer should maintain a separate local workspace directory for each codeline of a package. Trying to maintain multiple codelines in the same workspace directory leads to confusion. CVS supports checking out labeled versions into arbitrary directories, making it simple for developers to maintain multiple codelines on their local machine.
5.2 Labeling

5.2.1 Never Move or Delete Labels

Never is a long time, but for the most part moving or deleting labels should be avoided as far as possible. Once a label is deleted it is fairly difficult or impossible to get them back if needed.

5.2.2 Use Developer Tags for Sharing Stable Intermediate Versions

Developers are encouraged to use developer tags as often as necessary to save stable intermediate versions during the construction phase. Doing so allows fellow developers to fall back on a stable copy whenever a codeline becomes corrupt.

5.2.3 Tag Entire Packages not Individual Files

Tagging should be performed on the entire package unless there are very good reasons not to; tagging an individual file is usually not very meaningful.

5.3 Committing

5.3.1 Commit Frequently, but only after Thorough Testing

The general rule on committing changes is to update commit as frequently as possible. Prior to every commit, developers should update their local workspace with any recent changes other developers have committed to the repository. CVS only stores changes between any two successive versions, rather than the complete text of every committed version. Upon commit, CVS calculates the differences between the version being committed, the latest version in the repository, and their greatest common ancestor. If developers update and commit regularly, the greatest common ancestor will probably also be the latest repository version, which means CVS only needs to calculate a two-way diff, in which case conflicts will never occur. Conflicts are more likely to occur when large changes have been made to a file by two different developers (and thus CVS has to do a three-way diff as outlined above). In addition, any conflicts discovered will also be more difficult to reconcile since there are more potential changes between the conflicting versions.

Depending on your team’s policy, before committing changes to the global repository, you may be expected to build, unit test, and smoke test in your local workspace
. It is strongly recommended that you perform an “update” to synchronize your local codeline before running your tests. This ensures that your local changes are compatible with the current codeline. The appropriate level of testing will have to be determined on a per-project basis. The balance we are trying to reach is between having a relatively stable mainline against imposing such a huge pre-commit testing burden that developers commit only rarely. A good rule of thumb is that your changes should at the very least build with the latest versions of the source code in the repository.
5.3.2 Commit Fine-Grained Tasks

If you have a very course grained task, it may not be possible to commit as frequently as with small grained task. Try splitting course-grained tasks into fine-grained ones so that you can commit more frequently. This doesn’t mean to create artificially small tasks that would break a build due to other missing dependencies. Commits should, at a minimum, leave the codeline stable enough for other developers to continue their work.
5.3.3 Do Not Commit During the Nightly Build Cycle

Avoid committing code during the nightly build cycle since this could obviously corrupt the build. Contact the SCM administrator concerning the current cutoff time for commits.

5.4 Miscellaneous

5.4.1 Update Workspace Frequently

You should update your local workspace on a daily basis and particularly before performing a smoke test. If the current baseline breaks your local build, try to identify the offending component and contact the components owner. If the component owner is unable to resolve the problem and commit a fix in a timely manner, it is acceptable to update your local workspace with the last known stable release.

5.4.2 Put 3rd Party Code in a Separate Codeline

Keep 3rd party code in a separate codeline.

5.4.3 Fix Nightly Builds ASAP

If a build is broken the package coordinator will need to identify the problem and get the developer(s) to modify and commit a fixed version as soon as possible. It is always better to catch potential integration problems as early as possible.

6. Off-site Development

NCICB mandates that all off-site development projects commit source artifacts for release candidates to NCICB CML. This is a minimum requirement that will allow NCICB to maintain a consistent build management/deployment procedure for both off-site and on-site development. Off-site projects may also choose to use the NCICB CML as their primary version control system if desired.

7. Non-Java Based Applications

7.1 Oracle Designer Applications

Unfortunately, Oracle Designer does not support true versioning and it can be difficult to recover a specific release baseline. For this reason, it is recommended that any production releases of Oracle Designer applications be exported and saved to the NCICB CML. Further, it is recommended that not only a binary export be committed to the CML, but also the actual unbundled source is committed as well.

As far as implementation details within Designer, it is strongly recommended that separate branches (i.e. subfolders) be created for each major/minor release under a specific application folder. Following this branching policy within Designer, will not only be helpful in the exporting of code for storage in the NCICB CML, but it will also help alleviate the pains in making patch releases while maintaining multiple simultaneous releases of a specific application.

8. Tools

CVS is the version control software used to implement the NCICB CML. There are several clients that are supported for interfacing with the CVS repository including WinCVS and Tortoise CVS. In addition, many IDEs currently support CVS integration (notably the strongly recommended open-source Eclipse, and IDEA from IntelliJ). There are also a few add-on tools that are supported for CVS including CVSWeb and CVSGraph. Details on function and usage of each of these supported tools will be provided in separate user guides. Please contact the SCM administrator for further information and availability concerning the user guides for the various supported tools.

Appendix A

8.1 Administrative Request Forms

8.1.1 User Request

An email message should be sent to the SCM Administrator with the user name and a list of modules to which he should have access.
8.1.2 Package/Module Request

An email message should be sent to the SCM Administrator with the module name and a list of users who should be granted access to the module.
8.1.3 Branch Request

An email should be sent to the SCM Administrator with the module name, the preferred name of the new branch, and, if the branch is not being created off the trunk, the name of the parent branch. The SCM Administrator will coordinate creation of the branch
.
8.1.4 Tag/Label Request

As with branch requests, an email should be sent to the SCM Administrator with the module name and the tag name to create, as well as the branch within which to create the tag, if not the main trunk. Teams are allowed/encouraged to create their own tags as necessary, but the SCM Administrator will always be happy to assist
.
8.1.5 Custom Web-based SCM Request Application

The intent of the custom web-based SCM request application is to help automate the request process. This application will help to automate the key entry process for filling in the various Administrative Request forms. It will also control the approval workflow necessary to process the request. The SCM Request Application is currently still in the proposal stage; you may contact the SCM administrator to find out the current status.

� Others might argue that change control is the most important component of an SCM process.

� How much testing should be done prior to commit depends on how stable the codeline needs to be. A release codeline requires much more testing than does an active development line, for example. Teams should set policies appropriately for each codeline under development, with input from the SCM Administrator.

� It is important that all changes be committed prior to branching; uncommitted changes will go into the main trunk, but not the branch, after the branch has been created.

� As with branches, it is important that all changes be committed prior to branching; tags are applied to the versions in the repository, not local copies, so uncommitted changes will not be properly tagged.

[image: image5.png]